中1の数学で習う空間図形の公式を練習できる問題プリントです。球、三角錐、三角柱、円錐、円柱、角錐、角柱の体積、表面積の求め方、
簡単に解けるようになるポイントやコツ、覚え方
などが載っています。空間図形がわからない、授業が理解できない、テストが解けないという中学生用に基本(基礎)問題を中心に作成しています。一覧やまとめ、苦手克服としてお使いいただけます。
このプリントを解くと分かること
空間図形の公式を覚えているかの確認ができます。
※画像をクリックするとPDFに飛びます
無料でダウンロードできる算数プリントですが、家庭内での個人利用以外は利用規約を一読して下さい。
解き方・ポイント説明
空間図形の問題を解くためには公式を覚えておくことが必要です。
空間図形の公式一覧
- 円柱の体積の求め方 → V=πr²h
- 円錐の体積の求め方 → V=1/3πr²h
- 角柱(三角柱、四角柱など)の体積の求め方 → V=sh
- 角錐(三角錐、四角錐など)の体積の求め方 → V=1/3sh
- 球の体積の求め方 → V=4/3πr³
- 球の表面積の求め方 → S=4πr²
平面図形の公式一覧
- 円の面積の求め方 → S=πr²
- 円周の長さの求め方 → ℓ=2πr
- おうぎ形の面積の求め方 → S=πr²× 𝑎/360
- おうぎ形の弧の長さの求め方 → ℓ=2πr× 𝑎/360
- 正方形の面積の求め方 → 1辺×1辺
- 長方形の面積の求め方 → たて×横
- 三角形の面積の求め方 → 底辺×高さ÷2
- 平行四辺形の面積の求め方 → 底辺×高さ
- 台形の面積の求め方 → (上底+下底) ×高さ÷2
- ひし形の面積の求め方 → 横の対角線×縦の対角線÷2
アルファベットの意味
- V=体積
- S=面積
- ℓ=周の長さ、弧の長さ
- r=半径
- π=円周率
- h=高さ
ねじれの位置の問題
中学1年生の空間図形の単元では「ねじれの位置」という問題も出てきます。
ねじれの位置とは、簡単に言うと
空間図形で、平行でもなく交わってもない辺のこと
を言います。
難しく言うと、平行でなく交わらない2つの直線の位置関係のことです。 平行や交わる2直線は同じ平面上にありますが,ねじれの位置の2直線は同じ平面上にはありません。 2直線の位置関係は「平行」「交わる」「ねじれの位置」のいずれかの関係にあります。
展開図
展開図は空間図形の「表面積」などを求めるときに使います。※表面積とは側面積と底面積を合わせたものです。
展開図が描けなかったり、イメージするのが苦手な場合は、教科書や問題集などを見ながら実際に展開図を作って空間図形にしてみましょう。
空間図形の練習はこちらをクリック
空間図形の問題が苦手な子は...
空間図形の問題を解くのに時間がかかる、勘で解いている、意味を理解できていない、という場合はまずはこれを確認してみましょう。
- 平面図形の面積の求め方や図形の「縦、横、高さ」はどこなのか、
- 平行、垂直の意味を答えられるか
- 頂点、辺、面は図形のどこにあたるのか
ここを理解できていないと空間図形は解くことが難しくなります。
空間図形で出てくる問題
- 体積の求め方
- 表面積の求め方
- 展開図
- ねじれの位置
苦手な子への教え方
子供に教える時に大切なことは言葉の使い方です。「違う!」「なんで解けないの?」「他の子はできているよ?」というようなネガティブな言葉は使わないようにしましょう。特に算数数学が苦手な子は数字や言葉を理解するのに少し時間がかかることがあります。しかし、慣れてくれば解けるようになります。なぜなら、算数は数字が違うだけで解き方は同じなのですから。
このプリントの製作者
算数が苦手な小学生専門の個別指導学習塾/数楽の家
算数が嫌い、苦手意識がある、数字すら見たくない、算数の日は学校に行きたくなくなる、という生徒たちを算数が「楽しい!」「面白い!」と思えるような授業で克服に導く場所です。原因は何なのか、いつからそうなったのか、という理由をピンポイントで見つけ出して、一つひとつクリアにしていきます。
授業内容はひたすらプリントを解かせる。ではなく、「なぜそうなるのか」という理由を優しく解説しながら進めていきます。勉強法やテスト対策のアドバイスも行っています。
福岡県福岡市に場所を構えており、対面授業のほかにも算数数学オンライン授業や親御さん向けの正しい算数の教え方講座なども行っています。また、不登校の生徒に対応できる塾でもあります。
講師紹介
倉永 将太朗
チキン南蛮と地鶏が美味しい宮崎県出身
自身も算数数学で苦労した経験があることから、同じ思いをしている子ども達の心に寄り添いながらの授業を行っています。多くの生徒さんに喜んでいただき、現在は
福岡県でナンバーワンの口コミ数
をほこり、予約がなかなか取れない塾となりました。